American journal of physiology. Endocrinology and metabolism | 2021

Chronic high fat feeding and prolonged fasting in liver-specific ANGPTL4 knockout mice.

 
 
 
 
 

Abstract


Obesity is associated with dyslipidemia, ectopic lipid deposition and insulin resistance. In mice, the global or adipose-specific loss of function of the protein angiopoietin-like 4 (ANGPTL4) leads to decreased plasma triglyceride levels, enhanced adipose triglyceride uptake, and protection from high-fat diet-induced glucose intolerance. ANGPTL4 is also expressed highly in the liver, but the role of liver-derived ANGPTL4 is unclear. The goal of this study was to determine the contribution of hepatocyte ANGPTL4 to triglyceride and glucose homeostasis in mice during a high fat diet challenge. We generated hepatocyte-specific ANGPTL4 deficient (Angptl4LivKO) mice, fed them a 60% kCal/fat diet (HFD) for 6 months, and assessed triglyceride, liver, and glucose metabolic phenotypes. We also explored the effects of prolonged fasting on Angptl4LivKO mice. The loss of hepatocyte-derived Angptl4 led to no major changes in triglyceride partitioning or lipoprotein lipase activity compared to control mice. Interestingly, although there was no difference in fasting plasma triglyceride levels after a 6 h fast, after an 18 h fast normal chow diet fed Angptl4LivKO mice had lower triglyceride levels than control mice. On a HFD, Angptl4LivKO mice initially showed no difference in glucose tolerance and insulin sensitivity, but improved glucose tolerance emerged in these mice after 6 months on HFD. Our data suggest that hepatocyte ANGPTL4 does not directly regulate triglyceride partitioning, but that loss of liver-derived ANGPTL4 may be protective from HFD-induced glucose intolerance and influence plasma TG metabolism during prolonged fasting.

Volume None
Pages None
DOI 10.1152/ajpendo.00144.2021
Language English
Journal American journal of physiology. Endocrinology and metabolism

Full Text