American journal of physiology. Renal physiology | 2021

Activation of hypoxia-sensing pathways promotes renal ischemic preconditioning following myocardial infarction.

 
 
 
 
 
 
 
 
 
 

Abstract


Ischemic heart disease is the leading cause of death worldwide and is frequently comorbid with chronic kidney disease. Physiological communication is known to occur between the heart and the kidney and primary dysfunction in either organ can induce dysfunction in the other, a clinical entity known as cardiorenal syndrome, but mechanistic details are lacking. Here, we used a model of experimental myocardial infarction (MI) to test effects of chronic cardiac ischemia on acute and chronic kidney injury. Surprisingly, chronic cardiac damage protected animals from subsequent acute ischemic renal injury, an effect that was accompanied by evidence of chronic kidney hypoxia. The protection observed post-MI was similar to protection observed in a separate group of healthy animals housed in ambient hypoxic conditions prior to kidney injury, suggesting a common mechanism. There was evidence that chronic cardiac injury activates renal hypoxia-sensing pathways. Increased renal abundance of several glycolytic enzymes following MI suggested a shift towards anaerobic glycolysis may confer renal ischemic preconditioning. In contrast, effects on chronic renal injury followed a different pattern with post-MI animals displaying worsened chronic renal injury and fibrosis. These data show that while chronic cardiac injury following MI protected against acute kidney injury via activation of hypoxia-sensing pathways, it worsened chronic kidney injury. The results further our understanding of cardiorenal signaling mechanisms and have implications for the treatment of heart failure patients with associated renal disease.

Volume None
Pages None
DOI 10.1152/ajprenal.00476.2020
Language English
Journal American journal of physiology. Renal physiology

Full Text