American journal of physiology. Renal physiology | 2019

Bladder urothelial BK channel activity is a critical mediator for innate immune response in urinary tract infection pathogenesis.

 
 
 
 

Abstract


The open probability of calcium-activated voltage-gated potassium channel (BK channel) on bladder umbrella urothelial cells is increased by lipopolysaccharide (LPS). It is hypothesized that this channel s activity is important in the urothelial innate immune response during urinary tract infection (UTI). We performed in vivo studies using female C57BL/6 mice whose bladders were inoculated with LPS (150 μl of 1 mg/ml) or uropathogenic Escherichia coli (UPEC, UTI89), without and with intravesical BK inhibitor iberiotoxin (IBTX, 1 μM). Inflammatory biomarkers (chemokines and cytokines) were measured in urine specimens collected 2 h after inoculation using a 32-multiplex ELISA. Of these 32 biomarkers, 19 and 15 were significantly elevated 2 h after LPS and UPEC exposure, respectively. IBTX significantly abrogated the elevations of 15 out of 19 biomarkers after LPS inoculation and 12 out of 15 biomarkers after UPEC inoculation. In a separate experiment, qPCR for IL-6, interferon-γ-induced protein 10 (CXCL10), and macrophage inflammatory protein 2 (CXCL2) in urothelium paralleled the changes measured in urine of these same biomarkers, supporting that urinary changes in biomarker levels reflected urothelial expression changes. These in vivo data demonstrated that BK channel activity is crucial in the urothelial host innate immune response, as measured by changes in urinary biomarkers, in UTI pathogenesis.

Volume 316 4
Pages \n F617-F623\n
DOI 10.1152/ajprenal.00554.2018
Language English
Journal American journal of physiology. Renal physiology

Full Text