Journal of applied physiology | 2021

The effect of seasonal acclimatization on whole-body heat loss response during exercise in a hot humid environment with different air velocity.

 
 
 
 
 
 
 
 
 

Abstract


Seasonal acclimatization from winter to summer is known to enhance thermoeffector responses in hot-dry environments during exercise whilst its impact on sweat evaporation and core temperature (Tcore) responses in hot-humid environments remains unknown. We therefore sought to determine whether seasonal acclimatization is able to modulate whole-body sweat rate (WBSR), evaporated sweat rate, sweating efficiency and thermoregulatory function during cycling exercise in a hot-humid environment (32∘C, 75% RH). We also determined whether the increase in air-velocity, could enhance evaporated sweat rate and sweating efficiency before and after seasonal acclimatization. Twelve males cycled for 1-hour at 40% VO2max in winter (pre-acclimatization) and repeated the trial again in summer (after-acclimatization). For the last 20-min of cycling at a steady-state of Tcore, air-velocity increased from 0.2 (0.04) m/s to 1.1 (0.02) m/s by using an electric fan located in front of the participant. Seasonal acclimatization enhanced WBSR, unevaporated sweat rate, local sweat rate and mean skin temperature compared to pre-acclimatization state (all P<0.05) whilst sweating efficiency was lower (P<0.01) until the 55-min of exercise. Tcore and evaporated sweat rate were unaltered by acclimatization status (all P>0.70). In conclusion, seasonal acclimatization enhances thermoeffector responses but does not attenuate Tcore during exercise in a hot-humid environment. Furthermore, increasing air-velocity enhances evaporated sweat rate and sweating efficiency irrespective of acclimated state.

Volume None
Pages None
DOI 10.1152/japplphysiol.00837.2020
Language English
Journal Journal of applied physiology

Full Text