Journal of neurophysiology | 2019

The effects of vibration-induced altered stretch reflex sensitivity on maximal motor unit firing properties.

 
 
 
 

Abstract


It is well known that muscle spindles have a monosynaptic, excitatory connection with α-motoneurons. However, the influence of muscle spindles on human motor unit behavior during maximal efforts remains untested. It has also been shown that muscle spindle function, as assessed by peripheral reflexes, can be systematically manipulated with muscle vibration. Therefore, the purpose of this study was to analyze the effects of brief and prolonged vibration on maximal motor unit firing properties. A crossover design was used, in which each of the 24 participants performed one to three maximal knee extensions under three separate conditions: 1) control, 2) brief vibration that was applied during the contraction, and 3) after prolonged vibration that was applied for ~20 min before the contraction. Multichannel EMG was recorded from the vastus lateralis during each contraction and was decomposed into its constituent motor unit action potential trains. Surprisingly, an approximate 9% reduction in maximal voluntary strength was observed not only after prolonged vibration but also during brief vibration. In addition, both vibration conditions had a large, significant effect on firing rates (a decrease in the rates) and a small to moderate, nonsignificant effect on recruitment thresholds (a small increase in the thresholds). Therefore, vibration had a detrimental influence on both maximal voluntary strength and motor unit firing properties, which we propose is due to altered function of the stretch reflex pathway. NEW & NOTEWORTHY We used vibration to alter muscle spindle function and examined the vibration s influence on maximal motor unit properties. We discovered that vibration had a detrimental influence on motor unit behavior and motor output by decreasing motor unit firing rates, increasing recruitment thresholds, which led to decreased maximal strength. We believe that understanding the role of muscle spindles during maximal contractions provides a deeper insight into motor control and sensorimotor integration.

Volume 121 6
Pages \n 2215-2221\n
DOI 10.1152/jn.00326.2018
Language English
Journal Journal of neurophysiology

Full Text