Journal of neurophysiology | 2019

Fluoxetine reverses brain radiation and temozolomide-induced anxiety and spatial learning and memory defect in mice.

 
 
 
 
 

Abstract


Radiation therapy and concomitant temozolomide chemotherapy are commonly used in treatment of brain tumors, but they may also result in behavioral impairments such as anxiety and cognitive deficit. The present study sought to investigate the effect of fluoxetine on the behavioral impairments caused by radiation and temozolomide treatment. C57BL/6J mice were subjected to a single cranial radiation followed by 6-wk cyclic temozolomide administration and were then treated with chronic administration of fluoxetine. Behavioral tests were carried out to determine the anxiety-like behavior and cognition function of these animals. Long-term potentiation (LTP) in the hippocampus was measured by electrophysiology, and neurogenesis in the dentate gyrus was evaluated by immunohistochemistry. Mice treated with radiation and temozolomide showed increased anxiety-like behavior and cognitive impairment, along with LTP impairment and neurogenesis deficit. Chronic fluoxetine administration could reverse the behavioral dysfunction, enhance LTP, and increase neurogenesis in the hippocampus. NEW & NOTEWORTHY Mice treated with radiation and temozolomide showed increased anxiety-like behavior and cognitive impairment. Chronic fluoxetine administration could reverse the behavioral dysfunction. The effect of fluoxetine might be via rescuing the neurogenesis deficit caused by radiation and temozolomide treatment.

Volume 121 1
Pages \n 298-305\n
DOI 10.1152/jn.00581.2018
Language English
Journal Journal of neurophysiology

Full Text