Mathematical Problems in Engineering | 2019

Discrete Element Simulation of Factors Affecting the Fluidity of Nylon Powder

 
 
 
 
 

Abstract


Powder fluidity is one of the important factors affecting the smoothness of selective laser sintered parts and the mechanical properties of sintered parts. In this paper, the angle of repose (AOR) and angle of internal friction of nylon PA3200 powder were measured by a powder comprehensive tester and a direct shear tester to evaluate the flow properties of the powder particles. Based on the discrete element method (DEM), the rolling resistance contact model and the van der Waals force model were used to describe the interaction forces between the powder particles. The rolling resistance coefficient and friction coefficient within the contact model were calibrated by the results of the AOR experiments. Based on the orthogonal experimental method, the particle size and particle size distribution (PSD) (such as uniform distribution and Gaussian distribution) were selected as the influencing factors, and the effect of particle size and PSD on the fluidity of nylon PA3200 powder was studied by numerical simulation. The results show that the PSD has a stronger influence on the AOR than particle size, and the fluidity of uniform distribution is better than that of the Gaussian distribution.

Volume 2019
Pages 1-10
DOI 10.1155/2019/1082504
Language English
Journal Mathematical Problems in Engineering

Full Text