Journal of Diabetes Research | 2019

Hyperinsulinemia Can Cause Kidney Disease in the IGT Stage of OLETF Rats via the INS/IRS-1/PI3-K/Akt Signaling Pathway

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Aims We investigated the changes of renal structure and its function in normal glucose tolerance (NGT), impaired glucose tolerance (IGT), diabetes mellitus (DM), and diabetic kidney disease (DKD) stages in OLETF rats and explored the role of the INS/IRS-1/PI3-K/Akt signaling pathway. Methods OLETF rats were assigned into four groups on the basis of OGTT results and 24\u2009h urinary microalbumin: NGT, IGT, DM, and DKD groups. The changes of renal structure and function and the corresponding pathological changes were observed. The absorption of albumin and the expression of megalin, cubilin, IRS-1, PI3-K, and Akt in NRK-52E cells were measured after being stimulated by different concentrations of insulin. Results In the IGT group, the index which reflects the function of renal tubule-like N-acetyl-β-glucosaminidase, neutrophil gelatinase-associated lipocalin, retinol-binding protein, and cystatin C was higher than those in the control group and the NGT group (P < 0.05). Significant renal structure damages, especially in renal tubules, were observed in the IGT group. In the presence of insulin at a high concentration, the IRS-1/PI3-K/Akt signaling pathway in renal tubular epithelial cells was inhibited, and the expression of megalin and cubilin was significantly downregulated which was accompanied by a minimum uptake of albumin. Conclusions In contrast to DKD, the renal structural damage and functional changes in the IGT stage, in which we propose the term “IGT kidney disease,” mainly manifest as renal tubular injury. Insulin resistance and compensatory hyperinsulinemia may be involved in its pathogenesis.

Volume 2019
Pages None
DOI 10.1155/2019/4709715
Language English
Journal Journal of Diabetes Research

Full Text