J. Sensors | 2021

Monitoring and Mathematical Model Analysis of Dynamic Changes in Land Resources Based on SAR Sensor Image

 

Abstract


The monitoring and analysis of dynamic changes in land resources can detect the changes of land aimed at a single-band or multiband remote sensing image of multiple phases in a given region or target with image processing methods and can also extract the change information and realize remote sensing monitoring through the comprehensive analysis of multiphase remote sensing images. Synthetic aperture radar (SAR) image change monitoring technology, with the advantages of high resolution, high precision, real-time service, and rapid imaging, can achieve qualitative or quantitative analysis of targets and is gradually widely used in quarterly monitoring, emergency monitoring, postbatch verification, law-enforcement inspection and land inspection, and other remote sensing data acquisitions and analyses. Therefore, on the basis of summarizing the research results of previous research works, this paper expounded the current situation and significance of the researches on the monitoring and analysis of dynamic changes in land resources; elaborated the development background, current situation, and future challenges of SAR sensor data; introduced the methods and principles of band setting, polarization mode, geometric correction, and image filtering; proposed the status target identification of land resources; explored the dynamic information discovery of land resources; conducted the dynamic change monitoring of land resources based on SAR sensor data; analyzed the basis and characteristics of SAR sensor data; performed the generalization and optimization of land resource information; demonstrated the dynamic change analysis of land resources based on SAR sensor data; compared the acceptance ability and accuracy of SAR sensor data; and discussed the discovery and extraction of dynamic information of land resources. The results show that the SAR sensor data can monitor the characteristics of scattering points in land resource observation scenes and can obtain the change information of ground object by distance component and band component, so that the SAR system can make two-dimensional imaging of land resources directly in front of the receiving platform. Thus, the SAR data obtained by multisystem parameters shows great application potential in land resource monitoring, which provides the possibility of decoupling to remove land resources and surface roughness and thus provides possible solutions for land resource analysis in complex environment. The results of this paper provide a reference for the follow-up studies on the monitoring and analysis of dynamic changes in land resources based on SAR sensor data.

Volume 2021
Pages 1661825:1-1661825:12
DOI 10.1155/2021/1661825
Language English
Journal J. Sensors

Full Text