Oxidative Medicine and Cellular Longevity | 2021

Beta3-Adrenergic Receptor Activation Alleviates Cardiac Dysfunction in Cardiac Hypertrophy by Regulating Oxidative Stress

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Background Excessive myocardial oxidative stress could lead to the congestive heart failure. NADPH oxidase is involved in the pathological process of left ventricular (LV) remodeling and dysfunction. β3-Adrenergic receptor (AR) could regulate cardiac dysfunction proved by recent researches. The molecular mechanism of β3-AR regulating oxidative stress, especially NADPH oxidase, remains to be determined. Methods Cardiac hypertrophy was constructed by the transverse aortic constriction (TAC) model. ROS and NADPH oxidase subunits expression were assessed after β3-AR agonist (BRL) or inhibitor (SR) administration in cardiac hypertrophy. Moreover, the cardiac function, fibrosis, heart size, oxidative stress, and cardiomyocytes apoptosis were also detected. Results β3-AR activation significantly alleviated cardiac hypertrophy and remodeling in pressure-overloaded mice. β3-AR stimulation also improved heart function and reduced cardiomyocytes apoptosis, oxidative stress, and fibrosis. Meanwhile, β3-AR stimulation inhibited superoxide anion production and decreased NADPH oxidase activity. Furthermore, BRL treatment increased the neuronal NOS (nNOS) expression in cardiac hypertrophy. Conclusion β3-AR stimulation alleviated cardiac dysfunction and reduced cardiomyocytes apoptosis, oxidative stress, and fibrosis by inhibiting NADPH oxidases. In addition, the protective effect of β3-AR is largely attributed to nNOS activation in cardiac hypertrophy.

Volume 2021
Pages None
DOI 10.1155/2021/3417242
Language English
Journal Oxidative Medicine and Cellular Longevity

Full Text