Advances in Materials Science and Engineering | 2021

Study on the Freeze-Thaw Process of the Lining Structures of a Tunnel on Qinghai-Tibet Plateau with the Consideration of Lining Frost Damage

 
 
 
 
 

Abstract


In seasonally frozen ground, there are many frost problems in highway road tunnel after its excavation due to the heat exchange between the cold air and lining structure inside the tunnel. To mitigate these frost-related damages, thermal insulation layer is widely used at entrance and exit sections of the tunnel. In this study, a coupled mathematical model of heat, moisture, and stress was built for tunnels in seasonally permafrost regions. Then, based on the field-observed air temperature inside a roadway tunnel at Altun Mountain on the Qinghai-Tibet Plateau (QTP), seasonal freeze-thaw process of the surrounding rocks (SR) and lining structures were numerically investigated with the consideration of insulation methods: without insulation (WTIL) and laying the insulation layer on the inner surface of the second lining structure (STIL). Combined with the principle of Miner damage accumulation, the stress regimes of the lining structures of tunnel were investigated in WTIL and STIL. The results show that there was a significantly thermal disturbance of the SR after the tunnel excavation. In the 5th year of the operation period, the maximum seasonal freeze depth (MSFD) of the SR can reach 1.6\u2009m at the vault of the arch and that at the inverted arch was only 1.0\u2009m due to the pavement inside the tunnel. Then, both the absolute maximum value of the maximum principal stress (MAPS) and minimum principal stress (MIPS) in cold season were bigger than those in warm season comparing the value of the stress filed of the lining structure. In the same way, both the MAPS and MIPS of the lining structure in WTIL are bigger than those in STIL in numerical simulation. The positions of the maximum tensile stress of the primary lining structure in STIL and WTIL were inverted arch. For the lining structures, the greater tensile stress was generally harmful. Thus, the inverted arch of the tunnel should be laid on the insulation layer.

Volume None
Pages None
DOI 10.1155/2021/4921365
Language English
Journal Advances in Materials Science and Engineering

Full Text