Advances in Materials Science and Engineering | 2021

Study on Electroosmosis Consolidation of Punctiform Electrode Unit

 
 
 
 
 

Abstract


In the electroosmosis method, when the distance between the opposite electrode and the same electrode is equal, the two-dimensional effect of electroosmotic consolidation is significant, and the use of one-dimensional model will overestimate the potential gradient, making the calculated pore pressure value too large. Aiming at this problem, according to the electrode arrangement rule and the minimum composition, a punctiform electrode unit model is proposed, and electroosmotic experiments are carried out on the symmetric and asymmetric unit models. The two-dimensional electroosmotic consolidation governing equation of the punctiform electrode unit is established. The electric potential field of the electrode unit and the finite element form of the electroosmotic consolidation equation are given by the Galerkin method. The PyEcFem finite-element numerical library is developed using Python programming to calculate. The research results show the following: (1) The two-dimensional effect of the potential field distribution of the punctiform electrode unit is significant. The reduction of spacing of the same nature electrode in the symmetrical unit can make the potential distribution close to a uniform electric field. The asymmetry prevents the electric potential field distribution from being reduced to a one-dimensional model. (2) The number of anodes will affect the electroosmosis effect of the soil. The more the anodes, the better the electroosmosis reinforcement effect of the soil, and the distribution of negative excess pore water pressure will be more uniform. (3) In the early stage of electroosmosis, the more the drainage boundaries, the faster the generation of negative pore pressure, but in the middle and late stages of electroosmosis, the potential value becomes the decisive factor, and the amplitude of negative pore water pressure in asymmetric units is higher than that in symmetric units. The potential distribution will not affect the degree of consolidation but will affect the extreme pore water pressure.

Volume 2021
Pages 1-12
DOI 10.1155/2021/6627331
Language English
Journal Advances in Materials Science and Engineering

Full Text