Journal of Immunology Research | 2021

The Gut Microbiota and Its Relevance to Peripheral Lymphocyte Subpopulations and Cytokines in Patients with Rheumatoid Arthritis

 
 
 
 
 
 
 
 
 
 

Abstract


Growing experimental and clinical evidence suggests that a chronic inflammatory response induced by gut microbiome critically contribute to the development of rheumatoid arthritis (RA). Previous studies demonstrated the disturbance of lymphocyte subpopulations in RA patients. The purpose of this study was to explore the characteristics of gut microbiome and the associations between bacterium and lymphocyte subpopulations as well as cytokines in patients with RA. Fecal samples from 205 RA patients and 199 healthy controls (HCs) were collected for bacterial DNA extraction and 16S ribosomal RNA (rRNA) gene sequencing. The levels of peripheral lymphocyte subpopulation such as T, B, CD4+T, CD8+T, NK, T helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs) of these subjects were detected by flow cytometry combined with standard absolute counting beads. The serum levels of cytokines interleukin-2 (IL-2), IL-4, IL-6, IL-10, IL-17, tumour necrosis factor-α (TNF-α), and interferon-γ (INF-γ) were tested by flow cytometric bead array (CBA). Alpha and beta diversity of gut microbiome were explored by bioinformatics analysis. Spearman rank correlation test was used to explore the relationships between gut microbiome and lymphocyte subsets as well as serum cytokines. The diversity and relative abundance of intestinal microbiota in patients with RA were significantly different from those in HCs. Detailly, the abundant of phylum Proteobacteria in RA patients was more than that in HCs, while Firmicutes was less than in HCs. There was increased relative abundance of genus Clostridium_XlVa as well as genus Blautia, more abundance of Ruminococcus2 in patients with lower levels of T, B, CD4+T, and Tregs. In addition, the relative abundances of Pelagibacterium, Oxalobacter, ClostridiumXlVb, and ClostridiumXVIII were correlated with cytokines. Gut microbiome of RA patients was clearly different from that of HCs. Abnormal bacteria communities are associated with the altered levels of lymphocyte subpopulation and cytokines, which might be one of the pathogenesis of RA.

Volume 2021
Pages None
DOI 10.1155/2021/6665563
Language English
Journal Journal of Immunology Research

Full Text