Applied Bionics and Biomechanics | 2021

Locomotion Mode Recognition with Inertial Signals for Hip Joint Exoskeleton

 
 
 
 

Abstract


Recognizing locomotion modes is a crucial step in controlling lower-limb exoskeletons/orthoses. Our study proposed a fuzzy-logic-based locomotion mode/transition recognition approach that uses the onrobot inertial sensors for a hip joint exoskeleton (active pelvic orthosis). The method outputs the recognition decisions at each extreme point of the hip joint angles purely relying on the integrated inertial sensors. Compared with the related studies, our approach enables calibrations and recognition without additional sensors on the feet. We validated the method by measuring four locomotion modes and eight locomotion transitions on three able-bodied subjects wearing an active pelvic orthosis (APO). The average recognition accuracy was 92.46% for intrasubject crossvalidation and 93.16% for intersubject crossvalidation. The average time delay during the transitions was 1897.9\u2009ms (28.95% one gait cycle). The results were at the same level as the related studies. On the other side, the study is limited in the small sample size of the subjects, and the results are preliminary. Future efforts will be paid on more extensive evaluations in practical applications.

Volume 2021
Pages None
DOI 10.1155/2021/6673018
Language English
Journal Applied Bionics and Biomechanics

Full Text