Advances in Materials Science and Engineering | 2021

XRD Peak Profile Analysis of SiC Reinforced Al2O3 Ceramic Composite Synthesized by Electrical Resistance Heating and Microwave Sintering: A Comparison

 
 
 
 
 
 
 
 

Abstract


Al2O3 with 10 wt.% of SiC ceramic composite is synthesized at 1500°C by electrical resistance heating sintering with a holding time of 5 hours and microwave sintering methods with a holding time of 15 minutes. The samples generated by the two methods are characterized using powder X-ray diffraction and field emission scanning electron microscopy (FESEM). Experiments with both samples showed that the existence of the α-Al2O3 and β-SiC phases in both samples was verified by the findings of XRD pattern on both samples. Microstructure study illustrates that the Al2O3 matrix particles have spherical-like shape and their average matrix particle size is 67\u2009±\u20095\u2009nm for electrical resistance heating sintered sample and 38\u2009±\u20095\u2009nm for microwave sintered sample. The lattice strain and crystallite size of Al2O3 matrix were measured using Williamson–Hall (W-H) methods, which were achieved via the use of XRD peak broadening, based on a diffraction pattern. Three modified W-H models were used to compute other parameters, including strain (ε) and stress (σ), as well as energy density (u). These models were the uniform deformation model (UDM), the uniform deformation energy density model (UDEDM), and the uniform deformation stress model (UDSM). The average crystallite sizes of α-Al2O3 attained from these three models of Williamson–Hall (W–H) methods and FESEM analysis are correlated and found very close to each other. In all three models of the W-H technique, X-ray diffraction peak profile examination of electrical resistance heating-sintered and microwave-sintered Al2O3/10 wt. % SiC ceramic composite reveals that the microwave-sintered sample has finer crystallite size with less strain.

Volume None
Pages None
DOI 10.1155/2021/8341924
Language English
Journal Advances in Materials Science and Engineering

Full Text