Mathematical Problems in Engineering | 2021

Numerical Study of a Horizontal Wind Turbine under Yaw Conditions

 
 
 
 

Abstract


Over recent years, considerable attention has been devoted to the optimization of energy production in wind farms, where yaw angles can play a significant role. In order to quantify and maximize such potential power, the simulation of wakes is vital. In the present study, an actuator line model code was implemented in the OpenFOAM flow solver. A tip treatment was applied to involve the tip effect induced by the pressure equalization from the suction and pressure sides. The Leishman–Beddoes dynamic stall (LB-DS) model modified by Sheng et al. was employed to consider the dynamic stall phenomenon. The developed ALM-CFD solver was validated for the NREL Phase VI wind turbine reference case. The solver was then used in simulating the yawed wind turbine, and power variation was compared with UBEM and CFD. Overall, according to the obtained data, the coupled solver compared well with CFD. There was an improvement in terms of prediction of the phase delay that is due to the dynamic stall. However, there was still negligible overestimation in deep stall conditions. Based on the obtained results, it is suggested that the reduction of power output follows a cosine to the power of X function of the yaw angle. In terms of visualizing wake, the results demonstrated that the current ALM code was satisfying enough to simulate skewed wake and vortices trajectory. The effect of advancing and retreating blade was captured. It was found that yaw led to the concentration of the induced velocity downstream, resulting in a lower velocity deficit on a broader area, which is essential for wind farm optimization.

Volume None
Pages None
DOI 10.1155/2021/9978134
Language English
Journal Mathematical Problems in Engineering

Full Text