The Journal of clinical investigation | 2021

Structure-based phylogeny identifies Avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice.

 
 
 
 
 
 
 
 
 

Abstract


Drugs targeting host proteins can act prophylactically to reduce viral burden early in disease and limit morbidity, even with antivirals and vaccination. Transmembrane serine protease 2 (TMPRSS2) is a human protease required for SARS-CoV-2 viral entry and may represent such a target. We hypothesized that drugs selected from proteins related by their tertiary structure, rather than their primary structure, were likely to interact with TMPRSS2. We created a structure-based phylogenetic computational tool named 3DPhyloFold to systematically identify structurally similar serine proteases with known therapeutic inhibitors and demonstrated effective inhibition of SARS-CoV-2 infection in vitro and in vivo. Several candidate compounds, Avoralstat, PCI-27483, Antipain, and Soybean-Trypsin-Inhibitor, inhibited TMPRSS2 in biochemical and cell infection assays. Avoralstat, a clinically tested Kallikrein-related B1 inhibitor, inhibited SARS-CoV-2 entry and replication in human airway epithelial cells. In an in vivo proof of principle, Avoralstat significantly reduced lung tissue titers and mitigated weight-loss when administered prophylactically to SARS-CoV-2 susceptible mice indicating its potential to be repositioned for COVID-19 prophylaxis in humans.

Volume None
Pages None
DOI 10.1172/JCI147973
Language English
Journal The Journal of clinical investigation

Full Text