Journal of Applied Meteorology and Climatology | 2021

Remote Control of Sea Surface Temperature on the Variability of Tropical Cyclone Activity Affecting Vietnam’s Coastline

 
 
 
 

Abstract


This study examines the teleconnection between sea surface temperature (SST) in different ocean regions and tropical cyclone (TC) activity affecting Vietnam’s coastal region. Using spatial correlation and principal component analyses, it is found that the variability of TCs affecting Vietnam during 1982–2018 is remotely connected with SST in the Indian Ocean, the southwestern Pacific Ocean, and the northern Philippine Sea. Among the three regions, SST in the northern Philippine Sea displays the most significant inverse relationship with TC activity in the South China Sea (SCS), with lower June–November TC accumulated energy (ACE) for warmer northern Philippine Sea SST. Further analyses of large-scale atmospheric circulations show that this teleconnection between the northern Philippine Sea SST and TC activity in the SCS is linked to the East Asian subtropical jet (EASJ). Principal component analyses of the 200-hPa zonal wind associated with EASJ capture indeed a strong relationship between the second principal component, which characterizes the EASJ intensity, and ACE. Specifically, higher EASJ intensity corresponding to colder northern Philippine Sea SST would enhance large-scale ascending motion and low-level cyclonic anomalies in the SCS, which are favorable for TC formation and result in an overall increased ACE. Examination of the correlation between this second principal component and the northern Philippine Sea SST confirms that this correlation is statistically significant at a 95% confidence level. In this regard, these results support the Pacific–Japan teleconnection between the northern Philippine Sea SST and TC activity in the SCS.

Volume -1
Pages 323-339
DOI 10.1175/JAMC-D-20-0170.1
Language English
Journal Journal of Applied Meteorology and Climatology

Full Text