Journal of Climate | 2021

Mechanism for the Spatial Pattern of the Amplitude Changes in Tropical Intraseasonal and Interannual Variability under Global Warming

 
 
 
 

Abstract


This study investigates what forms the spatial pattern of the amplitude changes in tropical intraseasonal and interannual variability—represented by the two most important variables, precipitation (ΔP′) and circulation (Δω′)—under global warming, based on 24 models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5). Diagnostic analyses reveal that the moisture budget and thermodynamic energy equations related to the ΔP′ and Δω′ proposed separately in previous studies are simultaneously tenable. As a result, we investigate the mechanism for the spatial pattern of Δω′ from the perspective of the moist static energy (MSE) balance mainly considering the positive contribution from vertical advection. Therefore, based on the simplified MSE balance, the spatial pattern of Δω′ can be approximately projected based on three factors: background circulation variability ω′, the vertical gradient of mean-state MSE , and its future change . Under global warming, the middle-level vertical gradient of MSE increases slightly over the Indian Ocean and the Maritime Continent and decreases over the equatorial Pacific where the increase in sea surface temperature (SST) exceeds the tropical mean. The vertical gradient of mean-state MSE is modified by the increase in vertical gradients of moisture and dry static energy (DSE) simultaneously. In short, the change in the vertical gradient of mean-state MSE under global warming can influence the moisture budget and thermodynamic energy balances, resulting in the spatial pattern of ΔP′ and Δω′ at intraseasonal and interannual time scales consequently, mainly determined by the lower boundary moisture condition in the response of the SST change pattern.

Volume -1
Pages 1-35
DOI 10.1175/JCLI-D-20-0885.1
Language English
Journal Journal of Climate

Full Text