Journal of Physical Oceanography | 2021

Stratified shear instabilities in diurnal warm layers

 
 
 
 

Abstract


In low winds (≲2 m s−1), diurnal warm layers form but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds (≳8ms−1), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s−1, the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 10:00 and 16:00 local time (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = 1/4 threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h−1) that mixing is not expected even though Ri < 1/4. This changes around 16:00–17:00. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order of magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise.

Volume -1
Pages None
DOI 10.1175/JPO-D-20-0300.1
Language English
Journal Journal of Physical Oceanography

Full Text