Journal of Climate | 2021

Recent changes in the atmospheric circulation patterns during the dry-to-wet transition season in south tropical South America (1979-2020): Impacts on precipitation and fire season

 
 
 
 
 
 
 
 

Abstract


We analyze the characteristics of atmospheric variations over tropical South America using the pattern recognition framework of weather typing or atmospheric circulation patterns (CPs). During 1979-2020, nine CPs are defined in the region, using a k-means algorithm based on daily unfiltered 850 hPa winds over 0035°N-30°S, 90°W-30°W. CPs are primarily interpreted as stages of the annual cycle of the low-level circulation. We identified three “winter” CPs (CP7, CP8 and CP9), three “summer” CPs (CP3, CP4 and CP5) and three “transitional” CPs (CP1, CP2 and CP6). Significant long-term changes are detected during the dry-to-wet transition season (July-October) over south tropical South America (STSA). One of the wintertime patterns (CP9) increases from 20% in the 1980s to 35% in the last decade while the “transitional” CP2 decreases from 13% to 7%. CP9 is characterized by enhancement of the South American Low-Level Jet and increasing atmospheric subsidence over STSA. CP2 is characterized by southerly cold-air incursions and anomalous convective activity over STSA. The years characterized by high (low) frequency of CP9 (CP2) during the dry-to-wet transition season are associated with a delayed South American Monsoon onset and anomalous dry conditions over STSA. Consistently, a higher frequency of CP9 intensifies the fire season over STSA (1999-2020). Over the Brazilian states of Maranhão, Tocantins, Goiás and São Paulo, the seasonal frequency of CP9 explains around 35%-44% of the interannual variations of fire counts.

Volume None
Pages None
DOI 10.1175/jcli-d-21-0303.1
Language English
Journal Journal of Climate

Full Text