High Performance Polymers | 2021

Synthesis and properties of responsive self-healing polyurethane containing dynamic disulfide bonds

 
 
 
 
 
 
 

Abstract


The polymers with pH responsiveness and temperature sensitivity exhibit important applications in many fields. To endow the responsive polymers with self-healing is meaningful work, which contributes to increase their service life and reduce waste of resources significantly. In this research, a series of pH-responsive polyurethanes containing dynamic disulfide bonds and carboxylic acid functional groups were prepared by mixing polycaprolactone diol (PCL), hexamethylene diisocyanate (HDI), 2,2-dimethylolbutyric acid, and bis(2-hydroxyethyl) disulfide. The structure of the polymer was confirmed by some characterization methods such as infrared absorption spectroscopy, Raman scattering spectroscopy, X-ray diffraction, and differential scanning calorimetry. Many performances of the polymer such as the contact angle, thermal stability, mechanics, and self-healing properties can be adjusted by changing the functional units of polyurethanes. The dynamic disulfide bonds in the main chain were observed no harm to the pH response performance, instead which were beneficial to the promotion of heat resistance, tensile properties, and self-healing performance of polyurethane. The elongation at break and the tensile strength are increased by 85.3% and 54.9%, respectively. All the polyurethane exhibited considerable self-healing effects at 110°C, with the highest healing efficiency reaching 93.7%, as a result of the dissociation of hydrogen bonds and the exchange reaction of disulfide bonds.

Volume None
Pages None
DOI 10.1177/09540083211022818
Language English
Journal High Performance Polymers

Full Text