Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2019

A biomechanical model of the human defecatory system to investigate mechanisms of continence

 
 
 
 

Abstract


This article presents a method to fabricate, measure and control a physical simulation of the human defecatory system to investigate individual and combined effects of anorectal angle and sphincter pressure on continence. To illustrate the capabilities and clinical relevance of the work, the influence of a passive-assistive artificial anal sphincter (FENIXTM) is evaluated. A model rectum and associated soft tissues, based on geometry from an anonymised computed tomography dataset, was fabricated from silicone and showed behavioural realism to the biological system and ex vivo tissue. Simulated stool matter with similar rheological properties to human faeces was developed. Instrumentation and control hardware were used to regulate injection of simulated stool into the system, automate balloon catheter movement through the anal canal, define the anorectal angle and monitor stool flow rate, intra-rectal pressure, anal canal pressure and puborectalis force. Studies were conducted to examine the response of anorectal angles at 80°, 90° and 100° with simulated stool. Tests were then repeated with the inclusion of a FENIX device. Stool leakage was reduced as the anorectal angle became more acute. Conversely, intra-rectal pressure increased. Overall inclusion of the FENIX reduced faecal leakage, while combined effects of the FENIX and an acute anorectal angle showed the greatest resistance to faecal leakage. These data demonstrate that the anorectal angle and sphincter pressure are fundamental in maintaining continence. Furthermore, it demonstrates that use of the FENIX can increase resistance to faecal leakage and reduce anorectal angles required to maintain continence. Physical simulation of the defecatory system is an insightful tool to better understand, in a quantitative manner, the effects of the anorectal angle and sphincter pressure on continence. This work is valuable in helping improve our understanding of the physical behaviour of the continence mechanism and facilitating improved technologies to treat severe faecal incontinence.

Volume 233
Pages 114 - 126
DOI 10.1177/0954411918756453
Language English
Journal Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine

Full Text