Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2021

Load control and unsteady aerodynamics for floating wind turbines

 
 
 

Abstract


Unlike fixed-base offshore wind turbine, the soft floating platform introduces 6 more degrees of freedom of motions to the floating offshore wind turbine. This may cause much more complex inflow environment to the wind turbine rotors compared with fixed-base wind turbine. The wind seen locally on the blade changes due to the motions of the floating wind turbine platform which has a direct impact on the aerodynamic condition on the blade such as the angle of attack and the inflow velocity. Such unsteady aerodynamic effects may lead to high fluctuation of the loads and power output. The present work aims to study the high unsteady aerodynamic performance of the floating wind turbine under platform surge motion. The unsteady aerodynamic loads are predicted with a lifting surface method with a free wake model. A preview predict control algorithm is used as the pitch control strategy. A full scale U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) 5\u2009MW floating wind turbine is chosen as the subject of the present study. The unsteady aerodynamic performance and instabilities have been discussed in detail under prescribed platform surge motions with different control targets. Both minimizing the power output and rotor thrust fluctuation are set as the control objectives respectively. The theory analysis and the simulation results indicate that the blade pitch control can effectively alleviate the variation of the rotor thrust under platform surge motions. Larger amplitude of the variation of blade pitch is needed to alleviate the variation of the wind turbine power and this leads to high rotor thrust fluctuation. It is also shown that negative damping can be achieved during the blade pitch control process and may lead the floating platform wind turbine system into unstable condition.

Volume 235
Pages 1501 - 1526
DOI 10.1177/0957650921993255
Language English
Journal Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy

Full Text