Proceedings of the Human Factors and Ergonomics Society Annual Meeting | 2019

A deep learning-based RULA method for working posture assessment

 
 

Abstract


Musculoskeletal disorders (MSDs) represent one of the leading cause of injuries from modern industries. Previous research has identified a causal relation between MSDs and awkward working postures. Therefore, a robust tool for estimating and monitoring workers’ working posture is crucial to MSDs prevention. The Rapid Upper Limb Assessment (RULA) is one of the most adopted observational methods for assessing working posture and the associated MSDs risks in industrial practice. The manual application of RULA, however, can be time consuming. This research proposed a deep learning-based method for real-time estimating RULA from 2-D articulated pose using deep neural network. The method was trained and evaluated by 3-D pose data from Human 3.6, an open 3-D pose dataset, and achieved overall Marginal Average Error (MAE) of 0.15 in terms of RULA grand score (or 3.33% in terms of percentage error). All the data and code can be found at the first author’s GitHub (https://github.com/LLDavid/RULA_machine).

Volume 63
Pages 1090 - 1094
DOI 10.1177/1071181319631174
Language English
Journal Proceedings of the Human Factors and Ergonomics Society Annual Meeting

Full Text