Technology in Cancer Research & Treatment | 2019

Targeted Inhibitory Effect of Nasopharyngeal Carcinoma Cells by Hre2.Grp78 Chimeric Promoter Regulating Fusion Gene TK/VP3

 
 
 
 
 

Abstract


Objective: To construct plasmids with Hre2.Grp78 chimeric promoter regulating fusion gene TK/VP3 and elaborate the effects of overexpressed TK/VP3 on nasopharyngeal carcinoma cells. Methods: Four plasmids were constructed, including pcDNA3.1-CMV-TK/VP3, pcDNA3.1-Hre2.TK/VP3, pcDNA3.1-Grp78.TK/VP3, and pcDNA3.1-Hre2.Grp78.TK/VP3. The human nasopharyngeal carcinoma cell line HNE1 cells were transfected with the 4 plasmids, respectively. Cell viabilities were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was conducted using flow cytometry analysis. The expression of TK, VP3, Grp78, and hypoxia-inducible factor 1α and apoptosis-related proteins was determined by real-time quantitative polymerase chain reaction and Western blotting. Results: The recombinant plasmids that could steadily overexpress TK and VP3 were successfully constructed. Expression of TK and VP3 in cells transfected with pcDNA3.1-Hre2.TK/VP3 and pcDNA3.1-Grp78.TK/VP3 was significantly higher than pcDNA3.1-CMV-TK/VP3, and expression in cells transfected with pcDNA3.1-Hre2.Grp78.TK/VP3 was the highest. Under glucose deprivation or hypoxia condition, Grp78 or hypoxia-inducible factor 1α was overexpressed so that expression of TK and VP3 was significantly upregulated, which could further inhibit cell proliferation and enhance cell apoptosis. Conclusion: We successfully constructed 4 plasmids with Hre2.Grp78 chimeric promoter regulating fusion gene TK/VP3, which could significantly inhibit the proliferation as well as enhance the apoptosis of nasopharyngeal carcinoma cells under glucose deprivation or hypoxia condition.

Volume 18
Pages None
DOI 10.1177/1533033819875166
Language English
Journal Technology in Cancer Research & Treatment

Full Text