Advances in Mechanical Engineering | 2021

Feed-forward control of elastic-joint industrial robot based on hybrid inverse dynamic model

 
 
 

Abstract


A novel feedforward control method of elastic-joint robot based on hybrid inverse dynamic model is proposed in this paper. The hybrid inverse dynamic model consists of analytical model and data-driven model. Firstly, the inverse dynamic analytical model of elastic-joint robot is established based on Lie group and Lie algebra, which improves the efficiency of modeling and calculation. Then, by coupling the data-driven model with the analytical model, a feed-forward control method based on hybrid inverse dynamics model is proposed. This method can overcome the influence of the inaccuracy of the analytical inverse dynamic model on the control performance, and effectively improve the control accuracy of the robot. The data-driven model is used to compensate for the parameter uncertainties and non-parameter uncertainties of the analytical dynamic model. Finally, the proposed control method is proved to be stable and the multi-domain integrated system model of industrial robot is developed to verify the performance of the control scheme by simulation. The simulation results show that the proposed control method has higher control accuracy than the traditional torque feed-forward control method.

Volume 13
Pages None
DOI 10.1177/16878140211038102
Language English
Journal Advances in Mechanical Engineering

Full Text