Nanoscale Research Letters | 2021

Restoring microRNA-499-5p Protects Sepsis-Induced Lung Injury Mice Via Targeting Sox6

 
 
 
 

Abstract


Background MicroRNAs (miRs) are known to participate in sepsis; hence, we aim to discuss the protective effect of miR-499-5p targeting sex-determining region Y-related high-mobility-group box 6 (Sox6) on sepsis-induced lung injury in mice. Methods The sepsis-induced lung injury model was established by cecal ligation and puncture. The wet/dry weight (W/D) ratio, miR-499-5p, Sox6, Caspase-3 and Caspase-9 expression in lung tissues of mice were tested. Lung injury score, collagen fibers and the degree of pulmonary fibrosis in lung tissues were determined. Further, the cell apoptosis in lung tissues was measured. The inflammatory factors contents and oxidative stress indices in bronchoalveolar lavage fluid (BALF) and lung tissues were detected via loss- and gain-of-function assays. The targeting relation between miR-499-5p and Sox6 was verified. Results W/D ratio and Sox6 were increased while miR-499-5p was decreased in lung tissues of sepsis-induced lung injury mice. Restored miR-499-5p or depleted Sox6 alleviated lung tissues pathology, reduced lung injury score, collagen fibers, the degree of pulmonary fibrosis, TUNEL positive cells, Caspase-3 and Caspase-9 protein expression and inflammatory factors contents in BALF and lung tissues as well as oxidative stress response in lung tissues of sepsis-induced lung injury mice. miR-499-5p targeted Sox6. Conclusion High expression of miR-499-5p can attenuate cell apoptosis in lung tissues and inhibit inflammation of sepsis-induced lung injury mice via depleting Sox6, and it is a potential candidate marker and therapeutic target for sepsis-induced lung injury.

Volume 16
Pages None
DOI 10.1186/s11671-021-03534-x
Language English
Journal Nanoscale Research Letters

Full Text