BMC Plant Biology | 2021

Lasting consequences of psyllid (Bactericera cockerelli L.) infestation on tomato defense, gene expression, and growth

 
 
 
 

Abstract


Background The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato ( Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘ Candidatus Liberibacter solanacearum’. Currently, the only effective strategies for controlling the diseases associated with this pathogen involve regular pesticide applications to manage psyllid population density. However, such practices are unsustainable and will eventually lead to widespread pesticide resistance in psyllids. Therefore, new control strategies must be developed to increase host-plant resistance to insect vectors. For example, expression of constitutive and inducible plant defenses can be improved through selection. Currently, it is still unknown whether psyllid infestation has any lasting consequences on tomato plant defense or tomato plant gene expression in general. Results In order to characterize the genes putatively involved in tomato defense against psyllid infestation, RNA was extracted from psyllid-infested and uninfested tomato leaves (Moneymaker) 3 weeks post-infestation. Transcriptome analysis identified 362 differentially expressed genes. These differentially expressed genes were primarily associated with defense responses to abiotic/biotic stress, transcription/translation, cellular signaling/transport, and photosynthesis. These gene expression changes suggested that tomato plants underwent a reduction in plant growth/health in exchange for improved defense against stress that was observable 3 weeks after psyllid infestation. Consistent with these observations, tomato plant growth experiments determined that the plants were shorter 3 weeks after psyllid infestation. Furthermore, psyllid nymphs had lower survival rates on tomato plants that had been previously psyllid infested. Conclusion These results suggested that psyllid infestation has lasting consequences for tomato gene expression, defense, and growth.

Volume 21
Pages None
DOI 10.1186/s12870-021-02876-z
Language English
Journal BMC Plant Biology

Full Text