Critical Care | 2021

Role of endothelial miR-24 in COVID-19 cerebrovascular events

 
 
 
 
 
 

Abstract


© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Levels of microRNAs (miRNAs) within extracellular vesicles (EVs) have been shown to be useful diagnostic and prognostic biomarkers in a number of disease states [1– 3]. However, EVs miRNAs have never been investigated in COVID-19. We recently demonstrated that miR-24 is expressed in human brain endothelial cells (ECs) and targets Neuropilin-1 [4], a co-factor needed for SARS-CoV-2 internalization that has been linked to cerebrovascular (CBV) manifestations of COVID-19 [5]. Henceforth, we hypothesized an association between plasma levels of endothelial EV miR-24 and the onset of CBV events in patients hospitalized for COVID-19. CBV events were defined by the presence of ischemic or hemorrhagic stroke (confirmed by imaging), migraine, or transient ischemic attack (no findings at imaging evaluation). We obtained plasma from 369 patients hospitalized for COVID-19, consecutively enrolled from November 2020 to April 2021 at the “Ospedali dei Colli”. We excluded 48 patients with a history of CBV disease, cancer, atrial fibrillation, deep vein thrombosis, or unavailability of admission blood samples; thus, the study was conducted in 321 subjects. As a control ageand sexmatched COVID-19 negative population, we obtained plasma from 57 healthy donors and 37 patients with CBV disorders. A SARS-CoV-2 test (RT-qPCR) was performed in all subjects to confirm or rule out the COVID-19 diagnosis. EC-EVs were extracted from the plasma collected from these patients via serial centrifugation and CD31+ magnetic isolation [1], and EC-EVs miR-24 levels were quantified as described [1, 4, 6]. Clinical parameters of our population are reported in Table 1. CBV events were diagnosed in 58 COVID-19 patients. No significant differences in comorbidities and in therapeutic management were observed. We found that EC-EV miR-24 levels were significantly reduced in patients with vs without CBV disorders among COVID19 patients, but not when examining subjects without COVID-19 (Table 1). These results were confirmed when subdividing our population according to the presence of ischemic or hemorrhagic findings at imaging evaluation (Fig. 1). Strikingly, using a stepwise multiple regression analysis, adjusting for age, hypertension, dyslipidemia, diabetes, and D-dimer, the association between EC-EV miR-24 and CBV disease in COVID-19 patients was confirmed [Wald: 17.723; Exp(B): 0.955, C.I. 95%: 0.935– 0.976, P < 0.001]. To our knowledge, this is the first study showing an association between EC-EV non-coding RNA and clinical outcome in COVID-19 patients. The main limitation of the present study is the relatively small size of our population; moreover, our findings, which are limited to Caucasian individuals, refer to subjects that have been hospitalized for COVID-19 and therefore cannot be generalized to patients with a mild disease. We identified a significant association linking EC-EV miR-24 and CBV disorders, which could be valuable to understand the mechanisms underlying the pathophysiology of CBV complications in COVID-19. Indeed, low Open Access

Volume 25
Pages None
DOI 10.1186/s13054-021-03731-1
Language English
Journal Critical Care

Full Text