Biotechnology for Biofuels | 2021

Life cycle impact assessment of biofuels derived from sweet sorghum in the U.S.

 
 
 

Abstract


Background The objective of this study was to evaluate the environmental impact of the production of a range of liquid biofuels produced from the combination of fermenting sorghum stalk juice (bioethanol) and the pyrolysis/hydrotreatment of residual bagasse (renewable gasoline and diesel). Life cycle impact assessment (LCIA) was performed on a farm-to-wheels system that included: (i) sorghum farming, (ii) juice extraction, (iii) juice fermenting, (iv) bagasse pretreatment, (v) bagasse thermochemical treatment (pyrolysis, hydroprocessing, and steam reforming), and (vi) typical passenger vehicle operation. LCIA results were compared to those of petroleum fuels providing the equivalent functional unit—cumulative kilometers driven by spark ignition direct injection (SIDI) vehicles utilizing either renewable gasoline or ‘bioE85—a blend of bioethanol and renewable gasoline,’ and a compression ignition direct injection (CIDI) vehicle utilizing renewable diesel produced from 76 tons of harvested sweet sorghum (1\xa0ha). Results Sweet sorghum biofuels resulted in a 48% reduction climate change impact and a 52% reduction in fossil fuel depletion. Additionally, reduced impacts in ozone depletion and eutrophication were found (67% and 47%, respectively). Petroleum fuels had lower impacts for the categories of non-carcinogenic health impact, smog, respiratory effects, and ecotoxicity, showing tradeoffs between sorghum and petroleum fuels. Conclusion Overall, sorghum biofuels provide advantages in environmental impact categories including global warming potential, fossil fuel depletion and eutrophication, showing potential for sorghum as a promising second-generation feedstock for fuel.

Volume 14
Pages None
DOI 10.1186/s13068-021-02009-6
Language English
Journal Biotechnology for Biofuels

Full Text