Parasites & Vectors | 2021

Aedes larval bionomics and implications for dengue control in the paradigmatic Jaffna peninsula, northern Sri Lanka

 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Background The larval bionomics of Aedes across the Jaffna peninsula in northern Sri Lanka was investigated to obtain information needed for developing more effective larval source reduction measures to control endemic arboviral diseases. Methods The habitats of preimaginal stages of Aedes mosquitoes were surveyed, and ovitrap collections were carried out in densely populated areas of the Jaffna peninsula. Aedes larval productivities were analysed against habitat characteristics, rainfall and dengue incidence. Adults emerging from collected larvae were tested for dengue virus (DENV). Results Only Aedes aegypti , Ae. albopictus and Ae. vittatus were identified in the field habitat collections and ovitraps. Aedes aegypti was the predominant species in both the field habitat and ovitrap collections, followed by Ae. albopictus and small numbers of Ae. vittatus . Tires and open drains were the preferred field habitats for Ae. aegypti , although larval productivity was higher in discarded plastic containers. The three Aedes species differed in field habitat preferences. Concomitant presence of the three Aedes species was observed in the field habitats and ovitraps. Larval productivities were inversely correlated with the salinity of the field habitat. Rainfall in the preceding month significantly correlated with larval productivity in the field habitats. DENV serotype 2 was detected in Ae. aegypti collected from ovitraps in the city of Jaffna. High Breteau, House and Container indices of 5.1, 5.1 and 7.9%, respectively, were observed in the field habitat surveys and ovitrap indices of up to 92% were found in Jaffna city. Conclusions Aedes larval indices in populated areas of the peninsula showed a high potential for dengue epidemics. Unacceptable littering practices, failure to implement existing dengue control guidelines, vertical transmission of DENV in vector mosquitoes and preimaginal development in brackish water and open surface drains, as well as in domestic wells that provide potable water, are serious constraints to the current Aedes larval source reduction methods used to control dengue in the Jaffna peninsula. Similar shortcomings in arboviral disease control are likely present in other resource-constrained tropical coastal zones worldwide.

Volume 14
Pages None
DOI 10.1186/s13071-021-04640-6
Language English
Journal Parasites & Vectors

Full Text