Advances in Difference Equations | 2019

Exponential basis and exponential expanding grids third (fourth)-order compact schemes for nonlinear three-dimensional convection-diffusion-reaction equation

 
 

Abstract


This paper addresses exponential basis and compact formulation for solving three-dimensional convection-diffusion-reaction equations that exhibit an accuracy of order three or four depending on exponential expanding or uniformly spaced grid network. The compact formulation is derived with three grid points in each spatial direction and results in a block-block tri-diagonal Jacobian matrix, which makes it more suitable for efficient computing. In each direction, there are two tuning parameters; one associated with exponential basis, known as the frequency parameter, and the other one is the grid ratio parameter that appears in exponential expanding grid sequences. The interplay of these parameters provides more accurate solution values in short computing time with less memory space, and their estimates are determined according to the location of layer concentration. The Jacobian iteration matrix of the proposed scheme is proved to be monotone and irreducible. Computational experiments with convection dominated diffusion equation, Schrödinger equation, Helmholtz equation, nonlinear elliptic Allen–Cahn equation, and sine-Gordon equation support the theoretical convergence analysis.

Volume 2019
Pages 1-27
DOI 10.1186/s13662-019-2275-1
Language English
Journal Advances in Difference Equations

Full Text