Environmental Systems Research | 2021

Impact of landscape dynamics and intensities on the ecological land of major cities in Ethiopia

 
 
 
 

Abstract


Background Understanding the dependence of ecological land and dynamics of the human-nature-coupled landscape is crucial for urban ecosystem resilience. In this study, we characterized and compared the Spatio-temporal responses of ecological land to urban landscape dynamics in Bahir Dar, Addis Ababa, Adama, and Hawassa cities in Ethiopia for the last three decades (1990–2020). Three sets of Landsat satellite images, field observations, and urban land indexes were used to produce landscape maps and geo-spatial data analysis. Results The results showed that in all cities ecological land has had changed intensely during 1990–2020 regarding its quantity, and spatial pattern. Besides, the substantial expansion of built-up ecosystems was manifested at the cost of ecological land. The built-up ecosystem was augmented by 17,341.0\xa0ha (32.16%), 2151.27\xa0ha (19.64%), 2715.21\xa0ha (12.21%), and 2599.65\xa0ha (15.71%) for Addis Ababa, Adama, Bahir Dar, and Hawassa cities respectively from 1990 to 2020 periods. A total of 40.97% of the prolonged built-up area was obtained from urban agricultural land alone. Moreover, urban sprawl is likely to continue, which will be outweighed by the loss of the open space ecosystem. The finding also confirmed the value of land-use intensity (LUI) of Addis Ababa (3.31), Bahir Dar (3.56), Hawassa (4.82), Adama (5.04) was augmented parallel with accelerated growth in the built-up ecosystems. Besides, the Integrated land-use dynamics degree (ILUDD) analysis confirmed that the spatial pattern of ecological land loss significantly consistent with LUI in all cities. Conclusion Land-use intensity (LUI) dynamics pattern was followed by urban ecological land to the multi-complex human-dominance ecosystem with a substantial influence on urban greenery and ecosystem services provides. Thus, in all cities, the implementation of effective ecological land management and urban planning policies are required to ensure economic development and ecosystem resilience.

Volume 10
Pages 1-19
DOI 10.1186/s40068-021-00237-1
Language English
Journal Environmental Systems Research

Full Text