Human Genomics | 2019

Identification and potential mechanisms of a 4-lncRNA signature that predicts prognosis in patients with laryngeal cancer

 
 
 
 
 
 
 
 

Abstract


PurposeThis study aimed to describe the use of a novel 4-lncRNA signature to predict prognosis in patients with laryngeal cancer and to explore its possible mechanisms.MethodsWe identified lncRNAs that were differentially expressed between 111 tumor tissue samples and 12 matched normal tissue samples from The Cancer Genome Atlas Database (TCGA). We used Cox regression analysis to identify lncRNAs that were correlated with prognosis. A 4-lncRNA signature was developed to predict the prognosis of patients with laryngeal cancer. The receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to verify the validity of this Cox regression model, and an independent prognosis analysis was used to confirm that the 4-lncRNA signature was an independent prognostic factor. Furthermore, the function of these lncRNAs was inferred using related gene prediction and Gene ontology (GO) enrichment analysis in order to clarify the possible mechanisms underlying their predictive ability.ResultsIn total, 214 differentially expressed lncRNAs were identified, and a 4-lncRNA signature was constructed using Cox survival analysis. The risk coefficients in the multivariate Cox analysis revealed that LINC02154 and MNX1-AS1 are risk factors for laryngeal cancer, whereas MYHAS and LINC01281 appear to be protective factors. The results of a functional annotation analysis suggested that the mechanisms by which these lncRNAs influence prognosis in laryngeal cancer may involve the extracellular exosome, the Notch signaling pathway, voltage-gated calcium channels, and the Wnt signaling pathway.ConclusionWe identified a novel 4-lncRNA signature that can predict the prognosis of patients with laryngeal cancer and that may influence the prognosis of laryngeal cancer by regulating immunity, tumor apoptosis, metastasis, invasion, and other characteristics through the Notch signaling pathway, voltage-gated calcium channels, and the Wnt signaling pathway.

Volume 13
Pages None
DOI 10.1186/s40246-019-0230-6
Language English
Journal Human Genomics

Full Text