International Journal of STEM Education | 2021

Evidence of probability misconception in engineering students—why even an inaccurate explanation is better than no explanation

 
 
 

Abstract


Background In the rapidly changing industrial environment and job market, engineering profession requires a vast body of skills, one of them being decision making under uncertainty. Knowing that misunderstanding of probability concepts can lead to wrong decisions, the main objective of this study is to investigate the presence of probability misconceptions among undergraduate students of electrical engineering. Five misconceptions were investigated: insensitivity to sample size , base rate neglected , misconception of chance , illusory correlation , and biases in the evaluation of conjunctive and disjunctive events. The study was conducted with 587 students who attended bachelor schools of electrical engineering at two universities in Serbia. The presence of misconceptions was tested using multiple-choice tasks. This study also introduces a novel perspective, which is reflected in examination of the correlation between students’ explanations of given answers and their test scores. Results The results of this study show that electrical engineering students are, susceptible to misconceptions in probability reasoning. Although future engineers from the sample population were most successful in avoiding misconceptions of chance, only 35% of examinees were able to provide a meaningful explanation. Analysis of students’ explanations, revealed that in many cases majority of students were prone to common misconceptions. Among the sample population, significant percentage of students were unable to justify their own answers even when they selected the correct option. The results also indicate that formal education in probability and statistics did not significantly influence the test score. Conclusions Results of the present study indicate a need for further development of students’ deep understanding of probability concepts, as well as the need for the development of competencies that enable students to validate their answers. The study emphasizes the importance of answer explanations, since they allow us to discover whether students who mark the correct answer have some misconceptions or may be prone to some other kind of error. We found that the examinees who failed to explain their choices had much lower test scores than those who provided some explanation.

Volume 8
Pages 1-15
DOI 10.1186/s40594-021-00279-y
Language English
Journal International Journal of STEM Education

Full Text