Geophysics | 2019

Elastic wave-equation migration velocity analysis preconditioned through mode decouplingElastic wave migration velocity analysis

 
 
 
 

Abstract


Multicomponent seismic data acquisition can reveal more information about geologic structures and rock properties than single component acquisition. Full elastic wave seismic imaging, which uses multicomponent seismic to its full potential, is promising because it provides more opportunities to understand the material properties of the earth by the joint use of Pand Swaves. A prerequisite of seismic imaging is the availability of a reliable macrovelocity model. Migration velocity analysis for Pwaves, which can fill that requirement for the P-wave velocity, has been well-studied, especially under the acoustic approximation. However, a reliable estimation of the S-wave velocities remains troublesome. Elastic wave-equation migration velocity analysis has the potential to build Pand S-wave velocity models together, but it inevitably suffers from the effects of mode coupling and conversion in the forward and adjoint wavefield reconstructions. We have developed a differential semblance optimization approach to sequentially invert the background Pand S-wave velocity models from extended PPand PS-images in the subsurface offset domain. Preconditioning of the gradients with respect to the S-wave velocity through mode decoupling can improve the reliability of the optimization. Numerical investigations with synthetic examples demonstrate the effectiveness of gradient preconditioning and the feasibility of our migration velocity analysis approach for elastic wave imaging.

Volume 84
Pages None
DOI 10.1190/GEO2018-0181.1
Language English
Journal Geophysics

Full Text