GEOPHYSICS | 2021

Using airborne vector magnetic data to calculate the projection of magnetic anomaly vector onto normal geomagnetic field

 
 
 
 
 
 
 
 

Abstract


The total-field magnetic anomaly [Formula: see text] is an approximation of the projection [Formula: see text] of the magnetic anomaly vector [Formula: see text] onto the normal geomagnetic field [Formula: see text]. However, for highly magnetic sources, the approximation error of [Formula: see text] cannot be ignored. To reduce the error, we have developed a method for calculating [Formula: see text] by using airborne vector magnetic data based on the vector relationship of geomagnetic field [Formula: see text]. The calculation uses the magnitude of the vectors [Formula: see text], [Formula: see text], and [Formula: see text] through a simple approach. To ensure that each magnitude has the same level, we normalize the magnitude of [Formula: see text] using the total-field magnetic data measured by the scalar magnetic sensor. The method is applied to the measured airborne vector magnetic data at the Qixin area of the East Tianshan Mountains in China. The results indicate that the calculated [Formula: see text] has high precision and can distinguish the approximation error less than 3.5\xa0nT. We also analyze the characteristics of the approximation error that are caused by the effects of different total magnetization inclinations. These error characteristics are used to predict the total magnetization inclination of a 2D magnetic source based on the measured airborne vector magnetic data.

Volume None
Pages None
DOI 10.1190/geo2020-0582.1
Language English
Journal GEOPHYSICS

Full Text