Journal of Clinical Oncology | 2021

A dual target sequencing solution to assess genomic and epigenomic alterations in cell-free DNA with no sample splitting.

 
 
 
 
 
 

Abstract


3043 Background: Assessing the genomic and epigenomic changes on plasma cell-free DNA (cfDNA) using next-generation sequencing (NGS) has become increasingly important for cancer detection and treatment selection guidance. However, two major hurdles of existing targeted NGS methods make them impractical for the clinical setting. First, there is no comprehensive, end to end, kit solution available for targeted methylation sequencing (TMS), let\xa0alone one that analyzes both mutation and methylation information in one assay. Second, the low yield of cfDNA from clinical blood samples presents a major challenge for conducting multi-omic analysis. Thus, an assay that is capable of both genomic and epigenomic analysis would be advantageous for clinical research and future diagnostic assays. Methods: Here, we report the performance of Point-n-SeqTM dual analysis, a kit solution that can provide in-depth DNA analysis with highly flexible and customizable focused panels to enable both genomic and epigenomic analysis without sample splitting. With custom panels of tens to thousands of markers designed with > 99% first-pass success rate, we conducted both performance validation and multi-center, multi-operator, reproducibility studies. Using spike-in titration of cancer cell-line gDNA with known mutation and methylation profiles, Point-n-Seq assay achieved a reliable detection level down to 0.003% of tumor DNA with a linear relationship between the measured and expected fractions. Benchmarked with conventional targeted sequencing and methylation sequencing, Point-n-Seq solution also demonstrated improved performance, speed and shortened hands-on time. Results: In a pilot clinical study, a colorectal cancer (CRC) TMS panel covering 560 methylation markers and a mutation panel with > 350 hotspot mutations in 22 genes were used in the dual assay. Using 1ml of plasma from late-stage CRC patients, cancer-specific methylation signals were detected in all samples tested, and oncogenic mutations. In an early-stage cohort (33 stage I/II CRC patient ), comparison of the analysis between tumor-informed, personalized-mutation panels (̃100 private SNVs) for each patient and the tumor-independent CRC methylation panels were conducted. The initial results showed that tumor-independent TMS assay achieved a comparable detection compared to the personalized tumor-informed approach. Moreover, cfDNA size information (fragmentome) is also integrated into the analysis of the same Point-n-Seq workflow to improve the assay sensitivity. Conclusions: Point-n-Seq dual analysis is poised to advance both research and clinical applications of early cancer detection, minimal residual disease (MRD), and monitoring.

Volume 39
Pages 3043-3043
DOI 10.1200/JCO.2021.39.15_SUPPL.3043
Language English
Journal Journal of Clinical Oncology

Full Text