AAPS PharmSciTech | 2019

Lipopolysaccharide Polyelectrolyte Complex for Oral Delivery of an Anti-tubercular Drug

 
 
 
 
 

Abstract


Anti-tuberculosis drug delivery has remained a challenge due to inconsistent bioavailability and inadequate sustained-release properties leading to treatment failure. To resolve these drawbacks, a lipopolysaccharide polyelectrolyte complex (PEC) encapsulated with rifampicin (RIF) (as the model drug) was fabricated, using the solvent injection technique (SIT), with soy lecithin (SLCT), and low-molecular-weight chitosan (LWCT). The average particle size and surface charge of RIF-loaded PEC particulates was 151.6\xa0nm and +\u200933.0\xa0nm, respectively, with noted decreased particle size and surface charge following increase in SLCT-LWCT mass ratio. Encapsulation efficiency (%EE) and drug-loading capacity (%LC) was 64.25% and 5.84%, respectively. Increase in SLCT-LWCT mass ratio significantly increased %EE with a marginal reduction in %LC. In vitro release studies showed a sustained-release profile for the PEC particulate tablet over 24\xa0h (11.4% cumulative release) where the dominant release mechanism involved non-Fickian anomalous transport shifting towards super case II release as SLCT ratios increased (6.4% cumulative release). PEC-tablets prepared without SIT presented with rapid Fickian-diffusion-based drug release with up to 90% RIF release within 4\xa0h. Ex vivo permeability studies revealed that lipopolysaccharide PEComplexation significantly increased the permeability of RIF by ~\u20092-fold within the 8-h study period. These results suggest successful encapsulation of RIF within a PEC structure while imparting increased amorphic regions, as indicated by x-ray diffraction, for potential benefits in improved drug dissolution, bioavailability, and dosing.

Volume 20
Pages 1-16
DOI 10.1208/s12249-019-1310-6
Language English
Journal AAPS PharmSciTech

Full Text