AAPS PharmSciTech | 2019

Nanocrystal Formulation Improves Vaginal Delivery of CSIC for HIV Prevention

 
 
 
 
 

Abstract


5-Chloro-3-phenylsulfonylindole-2-carboxamide (CSIC) is a highly potent non-nucleoside reverse transcriptase inhibitor (NNRTI) with potential for use in topical prophylaxis against HIV transmission. However, the hydrophobic nature of CSIC limits its administration through vaginal route. In this study, we developed nanocrystals of CSIC to potentially improve the aqueous solubility and intracellular uptake of CSIC in vitro and in vivo. CSIC nanocrystals were manufactured and stabilized with Pluronic F98 and hydroxypropyl methylcellulose E5. Transmission electron microscopy showed CSIC nanocrystals to be needle-like. Dynamic light scattering measurements showed a hydrodynamic size of 243 nm (polydispersity index <\u20090.3) and near neutral surface charge (−\u20097.8 mV). Particle size was maintained for at least 7 days in the liquid state and for at least 5 months after lyophilization. Drug content in the CSIC nanocrystal formulation (nanosuspension) was 0.8 mg/mL, which is 1000 times higher than the aqueous solubility of CSIC. In vitro release study showed that over 90% of CSIC was released from the nanocrystal formulation in a linear fashion over a period of 4 days. Importantly, CSIC nanocrystals showed equivalent cell-based anti-HIV activity (EC50 ~\u20091 nM) as that of non-formulated drug. In vitro studies demonstrated rapid macrophage uptake of CSIC nanocrystals via both energy-dependent (endocytosis) and independent processes. In vivo studies in Swiss Webster female mice showed that the nanocrystal formulation significantly improved CSIC delivery to mouse cervicovaginal tissues following intravaginal instillation. In summary, nanocrystals are a promising formulation approach for topical delivery of CSIC for protection against HIV sexual transmission.

Volume 20
Pages None
DOI 10.1208/s12249-019-1503-z
Language English
Journal AAPS PharmSciTech

Full Text