Disease Models & Mechanisms | 2019

Genome-wide analysis of androgen receptor binding and transcriptomic analysis in mesenchymal subsets during prostate development

 
 
 
 
 
 
 
 

Abstract


ABSTRACT Prostate development is controlled by androgens, the androgen receptor (AR) and mesenchymal–epithelial signalling. We used chromatin immunoprecipitation sequencing (ChIP-seq) to define AR genomic binding in the male and female mesenchyme. Tissue- and single-cell-based transcriptional profiling was used to define mesenchymal AR target genes. We observed significant AR genomic binding in females and a strong enrichment at proximal promoters in both sexes. In males, there was greater AR binding to introns and intergenic regions as well as to classical AR binding motifs. In females, there was increased proximal promoter binding and involvement of cofactors. Comparison of AR-bound genes with transcriptomic data enabled the identification of novel sexually dimorphic AR target genes. We validated the dimorphic expression of AR target genes using published datasets and confirmed regulation by androgens using ex vivo organ cultures. AR targets showed variable expression in patients with androgen insensitivity syndrome. We examined AR function at single-cell resolution using single-cell RNA sequencing (scRNA-seq) in male and female mesenchyme. Surprisingly, both AR and target genes were distributed throughout cell subsets, with few positive cells within each subset. AR binding was weakly correlated with target gene expression. Summary: A study of how androgens lead to sexually dimorphic development of the prostate using transcription factor genome binding and transcriptome analysis in mesenchymal subsets.

Volume 12
Pages None
DOI 10.1242/dmm.039297
Language English
Journal Disease Models & Mechanisms

Full Text