Annals of Transplantation | 2021

Klotho Regulates Epithelial-to-Mesenchymal Transition In Vitro via Wnt/β-Catenin Pathway and Attenuates Chronic Allograft Dysfunction in a Rat Renal Transplant Model

 
 
 
 
 
 

Abstract


Background Klotho deficiency has been implicated in various kidney diseases and has been associated with renal fibrosis. However, the role of Klotho in renal allograft fibrosis still remains undetermined. Material/Methods A 24-week-old rat renal transplant model with chronic allograft dysfunction (CAD) was carried out by orthotopic kidney transplantation using F344 donor rats to Lewis recipient rats. Successful establishment of the model was verified by HE and Masson staining and renal allograft function assessment. HK-2 cells were cultured and treated with TGF-β1 and/or siRNA-Klotho at various time points. Total proteins and RNA were extracted from the cultured cells and kidney tissues. Western blot assay and quantitative RT-PCR were used to analyze the expression of Klotho, fibronectin, and β-catenin pathways. Results We successfully established and identified a 24-week-old rat renal transplant model with CAD. Loss of Klotho was identified to be associated with epithelial-to-mesenchymal transition (EMT), renal allograft fibrosis, and CAD. In HK-2 cells, a significant decrease of Klotho protein was observed in the renal fibrosis induced by TGF-β1 in a time-dependent manner. Moreover, intervention of siRNA-Klotho remarkably promoted the progression of renal fibrosis and activation of the Wnt/β-catenin signaling pathway. Conclusions Our results show that Klotho has a significant protective role against EMT, renal allograft fibrosis, and CAD following kidney transplantation, which is mediated by inhibition of the Wnt/β-catenin signaling pathway.

Volume 26
Pages e930066-1 - e930066-8
DOI 10.12659/AOT.930066
Language English
Journal Annals of Transplantation

Full Text