Medical Science Monitor : International Medical Journal of Experimental and Clinical Research | 2019

The Signal Transducer and Activator of Transcription 5B (STAT5B) Gene Promotes Proliferation and Drug Resistance of Human Mantle Cell Lymphoma Cells by Activating the Akt Signaling Pathway

 
 
 
 
 
 

Abstract


Background Mantle cell lymphoma (MCL) is a high-grade B-cell lymphoma with poor prognosis. Fludarabine is used alone or in combination for relapsed and advanced-stage MCL. The expression of the signal transducer and activator of transcription 5B (STAT5B) gene is associated with tumorigenesis in solid tumors, but its role in MCL remains unknown. The aims of this study were to investigate the role of STAT5B in GRANTA-519 human mantle cell lymphoma cells and drug resistance. Material/Methods GRANTA-519 human mantle cell lymphoma cells were cultured with and without 10 μM fludarabine dephosphorylated 9-β-D-arabinofuranosyl-2-fluoroadenine, (2-F-araA) or 10 μM 4-hydroperoxycyclophosphamide (4-HC). The MTT assay assessed cell proliferation. Flow cytometry was used to investigate the cell cycle in MCL cells treated with the specific inhibitor of the Akt pathway, LY294002, and assessed cell cycle and cell apoptosis. Western blot was used to detect the expression levels of p-Akt/Akt and STAT5B/p-STAT5B. The gene expression profiles of lymph node (LN)-derived MCL cells were compared with peripheral blood (PB)-derived lymphocytes using bioinformatics and hierarchical cluster analysis. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was performed to determine the expression of the marker of proliferation Ki-67 (MKI67) gene. Results STAT5B was significantly upregulated in LN-derived MCL cells compared with PB lymphocytes. Increased expression of STAT5B was associated with increased MCL cell proliferation and reduced cell apoptosis and was associated with drug resistance and activation of Akt. Conclusions STAT5B promoted cell proliferation and drug resistance in human MCL cells by activating the Akt signaling pathway.

Volume 25
Pages 2599 - 2608
DOI 10.12659/MSM.914934
Language English
Journal Medical Science Monitor : International Medical Journal of Experimental and Clinical Research

Full Text