Medical Science Monitor : International Medical Journal of Experimental and Clinical Research | 2021

Knockout of the Cannabinoid Receptor 2 Gene Promotes Inflammation and Hepatic Stellate Cell Activation by Promoting A20/Nuclear Factor-κB (NF-κB) Expression in Mice with Carbon Tetrachloride-Induced Liver Fibrosis

 
 
 
 
 
 
 
 
 
 

Abstract


Background This study aimed to investigate the effect of deleting the cannabinoid receptor 2 (CB2) gene on the development of hepatic fibrosis induced by carbon tetrachloride (CCl4) in mice via regulating inflammation. Material/Methods The DNA was extracted from the tails of mice to identify whether the cannabinoid receptor 2 gene was successfully knocked out. A liver fibrosis model was established by an intraperitoneal injection of CCl4 into mice. Hepatic damage and hepatic fibrosis were evaluated by detecting serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and staining paraffin sections of liver tissue with hematoxylin-eosin (HE). The secretion and distribution of collagen in liver tissue were observed by Masson staining. Western blot analysis was performed to detect the expression of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), tumor necrosis factor alpha-induced protein 3 (A20), phosphorylated nuclear factor-κB p65 (p-NF-κB p65), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) in liver tissue. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of IL-6 and TNF-α mRNA in liver tissue. Results Compared with the control mice, the mice with CB2 knockout that were exposed to CCl4 exhibited increased liver damage, liver fibrosis, and upregulated α-SMA, TGF-β1, A20, and p-NF-κB p65 protein levels. IL-6 and TNF-α protein levels and mRNA levels were upregulated. Conclusions The deletion of the CB2 gene promoted the activation of hepatic stellate cells in mice with liver fibrosis and aggravated liver fibrosis by up-regulating the protein expression of A20 and p-NF-κB p65 and inducing inflammatory response, potentially providing new insight into the treatment of liver fibrosis.

Volume 27
Pages e931236-1 - e931236-10
DOI 10.12659/MSM.931236
Language English
Journal Medical Science Monitor : International Medical Journal of Experimental and Clinical Research

Full Text