Archive | 2021

Using machine learning to predict the number of alternative solutions to a minimum cardinality set covering problem

 
 
 

Abstract


Although the characterization of alternative optimal solutions for linear programming problems is well known, such characterizations for combinatorial optimization problems are essentially non-existent. This is the first article to qualitatively predict the number of alternative optima for a classic NP-hard combinatorial optimization problem, namely, the minimum cardinality (also called unicost) set covering problem (MCSCP). For the MCSCP, a set must be covered by a minimum number of subsets selected from a specified collection of subsets of the given set. The MCSCP has numerous industrial applications that require that a secondary objective is optimized once the size of a minimum cover has been determined. To optimize the secondary objective, the number of MCSCP solutions is optimized. In this article, for the first time, a machine learning methodology is presented to generate categorical regression trees to predict, qualitatively (extra-small, small, medium, large, or extra-large), the number of solutions to an MCSCP. Within the machine learning toolbox of MATLABĀ®, 600,000 unique random MCSCPs were generated and used to construct regression trees. The prediction quality of these regression trees was tested on 5000 different MCSCPs. For the 5-output model, the average accuracy of being at most one off from the predicted category was 94.2%.

Volume 2
Pages 1-16
DOI 10.12928/IJIO.V2I1.2948
Language English
Journal None

Full Text