Applied optics | 2021

Accurate and practical feature extraction from noisy holograms.

 
 

Abstract


Quantitative phase imaging using holographic microscopy is a powerful and non-invasive imaging method, ideal for studying cells and quantifying their features such as size, thickness, and dry mass. However, biological materials scatter little light, and the resulting low signal-to-noise ratio in holograms complicates any downstream feature extraction and hence applications. More specifically, unwrapping phase maps from noisy holograms often fails or requires extensive computational resources. We present a strategy for overcoming the noise limitation: rather than a traditional phase-unwrapping method, we extract the continuous phase values from holograms by using a phase-generation technique based on conditional generative adversarial networks employing a Pix2Pix architecture. We demonstrate that a network trained on random surfaces can accurately generate phase maps for test objects such as dumbbells, spheres, and biconcave discoids. Furthermore, we show that even a rapidly trained network can generate faithful phase maps when trained on related objects. We are able to accurately extract both morphological and quantitative features from the noisy phase maps of human leukemia (HL-60) cells, where traditional phase unwrapping algorithms fail. We conclude that deep learning can decouple noise from signal, expanding potential applications to real-world systems that may be noisy.

Volume 60 16
Pages \n 4639-4646\n
DOI 10.1364/AO.422479
Language English
Journal Applied optics

Full Text