Biomedical optics express | 2021

Highly sensitive crumpled 2D material-based plasmonic biosensors.

 
 
 
 

Abstract


We propose surface plasmon resonance biosensors based on crumpled graphene and molybdenum disulphide (MoS2) flakes supported on stretchable polydimethylsiloxane (PDMS) or silicon substrates. Accumulation of specific biomarkers resulting in measurable shifts in the resonance wavelength of the plasmon modes of two-dimensional (2D) material structures, with crumpled structures demonstrating large refractive index shifts. Using theoretical calculations based on the semiclassical Drude model, combined with the finite element method, we demonstrate that the interaction between the surface plasmons of crumpled graphene/MoS2 layers and the surrounding analyte results in high sensitivity to biomarker driven refractive index shifts, up to 7499\u2005nm/RIU for structures supported on silicon substrates. We can achieve a high figure of merit (FOM), defined as the ratio of the refractive index sensitivity to the full width at half maximum of the resonant peak, of approximately 62.5 RIU-1. Furthermore, the sensing properties of the device can be tuned by varying crumple period and aspect ratio through simple stretching and integrating material interlayers. By stacking multiple 2D materials in heterostructures supported on the PDMS layer, we produced hybrid plasmon resonances detuned from the PDMS absorbance region allowing higher sensitivity and FOM compared to pure crumpled graphene structures on the PDMS substrates. The high sensitivity and broad mechanical tunability of these crumpled 2D material biosensors considerable advantages over traditional refractive index sensors, providing a new platform for ultrasensitive biosensing.

Volume 12 7
Pages \n 4544-4559\n
DOI 10.1364/BOE.428537
Language English
Journal Biomedical optics express

Full Text