Optics express | 2019

Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities.

 
 
 
 
 
 
 

Abstract


We present a scheme for the electromagnetically induced transparency (EIT)-like nonlinear ground-state cooling in a double-cavity optomechanical system in which an optical cavity mode is coupled parametrically to the square of the position of a mechanical oscillator, an additional auxiliary cavity is coupled to the optomechanical cavity. The optimum cooling conditions is derived, based on which the heating process can be well suppressed and the mechanical resonator can be cooled with an optimal effect to near its ground state through EIT-like cooling mechanism even in unresolved sideband regime. It is demonstrated by numerical simulations that not only the average phonon number of steady state is lower than that of single-cavity optomechanical system, but also the cooling rate is greatly faster than that of the linear optomechanical coupling due to the two-phonon cooling process in the quadratic coupling. Also, the ground-state cooling is achievable even with a relatively weak quadratic coupling strengthby tunning the coupling between two cavities to reach the optimum cooling conditions, thus provides an solution for overcoming the limitations of weak quadratic coupling rate in experiments. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit and linear coupling regime.

Volume 27 16
Pages \n 22855-22867\n
DOI 10.1364/OE.27.022855
Language English
Journal Optics express

Full Text