Optics express | 2021

Exploiting the single-photon detection performance of InGaAs negative-feedback avalanche diode with fast active quenching.

 
 
 
 
 

Abstract


InGaAs/InP-based negative-feedback avalanche diodes (NFADs) for 1550 nm single-photon detection with easy-to-use and low-afterpulsing features have attracted many researchers on lidar and quantum optics. Here we present a fast active-quenching circuit specifically designed to exploit the performance of a multi-mode fiber coupled NFAD for free-running operation by a further suppression on afterpulsing effects. The quenching and recovery processes of the device were characterized using electroluminescent method and a novel dual-pulse method, respectively. Results show that the proposed circuit was capable of reducing the time required for quenching and recovery process of the NFAD by approximately 20 ns, and contributed to a reduction in the number of avalanche carriers by up to 30%. As a result, the total afterpulse probability (TAP) of the NFAD with active quenching was reduced by up to 70% compared with the condition without active quenching, and by approximately 90% compared with a standard InGaAs SPAD at the photon detection efficiency (PDE) of 20%. The TAP of the proposed detector was lower than 11% when the dead time was longer than 200 ns, 600 ns, and 2 μs at the PDE of 10%, 15%, and 25%, respectively, and the usable dead time was down to 80 ns with a TAP of 20.4% at the PDE of 10%, 1550 nm, 223 K, where the DCR was as low as 918 Hz. The low-afterpulsing, low-dead-time, low-DCR features of this compact detector makes it especially suitable for use in lidar applications.

Volume 29 7
Pages \n 10150-10161\n
DOI 10.1364/OE.420368
Language English
Journal Optics express

Full Text